The Microwave Spectrum of Phosphaethene, $CH_2=PH$

By HAROLD W. KROTO,* JOHN F. NIXON, KEIICHI OHNO, and NIGEL P. C. SIMMONS (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary A detailed assignment and accurate analysis of the R-band microwave spectrum of phosphaethene CH₂=PH, has been carried out and the rotational constants $A_0 = 138$ 503·20(21), $B_0 = 16$ 418·105(26), and $C_0 = 14\ 649.084(28)$ were derived together with all five quartic centrifugal distortion coefficients; this simplest phospha-alkene has been obtained by pyrolysis of SiMe₃CH₂PH₂ (at 710 °C) as well as of (CH₃)₂PH and CH₃PH₂ (at 1000 °C), though less efficiently.

OUR original detection of phosphaethene, CH₂=PH, in the pyrolysis products of dimethylphosphine (CH₃)₂PH was reported together with the detections of P-chlorophosphaethene, CH2=PCl, and C-diffuorophosphaethene CF2=PH.1 We here report the detailed assignment and accurate analysis of the microwave spectrum of CH₂=PH together with results of studies of an alternative method of production.

TABLE 1. Observed frequencies of CH2=PH.

Assignment						Frequency /MHz	Obs. — calc. /MHz
1	0	1	0	0	0	31 067.120	-0.001
3	0	3	2	1	2	$27 \ 208.936$	-0.002
5	1	4	5	1	5	$26 518 \cdot 826$	0.001
6	1	5	6	1	6	37 118.709	0.000
11	1	10	10	2	9	29 067.941	0.004
14	2	12	14	2	13	$32 692 \cdot 832$	0.007
17	2	15	16	3	14	$38 \ 429 \cdot 902$	0.014
16	1	16	15	2	13	39 680.356	-0.026
17	1	17	16	2	14	35 752.041	-0.049
18	1	18	17	2	15	34 530.133	-0.049

CH2=PH was originally produced by pyrolysing CH3PH2 as well as (CH₃)₂PH at ca. 1000 °C. However, the strongest spectra have now been obtained by passing Me₃SiCH₂PH₂ via a heated quartz tube (8 mm i.d. and 400 mm long; 710 °C) followed by a cold trap (-78 °C) through a 1 m cell of a Hewlett Packard 8460A microwave spectrometer operating between 26.5 and 40 GHz. Ten lines, including the $l_{01}-0_{00}$ line originally detected,¹ have been measured (Table 1) and fitted, using a least squares criterion to the Watson Hamiltonian² with quartic centrifugal distortion coefficients. It was found that to fit these lines all 5 quartic coefficients were necessary, otherwise relatively large inaccuracies creep into the derived A_0 , B_0 , and C_0 rotational constants. The results are listed in Table 2. The dipole moment (Table 2) has been obtained by analysis of the Stark effects of the $l_{01}-0_{00}$, $3_{03}-2_{12}$, and $5_{14}-5_{15}$ transitions.

TABLE 2. Derived rotational constants (MHz) and dipole moment components (Debye)^a

A_0	$138\ 503{\cdot}20(21)$	
B_0	$16\ 418\cdot 105(26)$	
C_0	$14.649 \cdot 084(28)$	
Δ_J	0.01696(17)	
Δ_{JK}	0.2133(31)	
Δ_K	$2 \cdot 418(31)$	
δι	0.001891(10)	
δ_K	0.1581(12)	
$\mu_{\Lambda} =$	$0.731(2)$ $\mu_{\rm B} = 0.470(3)$	(Debye)

^a Standard deviations for last figures in parentheses.

This work confirms the original preliminary detection and the rotational constants indicate that the / (CPH) angle is ca. 97.5°, much more acute than the equivalent \angle (CNH) angle in CH₂=NH where it is 110.4°.3

The new method of production, from Me₃SiCH₂PH₂, promises to be efficient enough to allow study of the isotopically substituted variants necessary for an accurate structure analysis and the use of Me₃SiX elimination reactions from Me₃SiCH₂PX₂ precursors appears to have a wide application in CH₂=PX synthesis.⁴

We acknowledge the communication of details of related work at Monash University by Prof. R. D. Brown prior to publication.

(Received, 28th April 1980; Com. 436.)

¹ M. J. Hopkinson, H. W. Kroto, J. F. Nixon, and N. P. C. Simmons, J. Chem. Soc., Chem. Commun., 1976, 513.

- ² J. K. G. Watson, J. Chem. Phys., 1967, 46, 1985.
 ³ R. Pearson and F. J. Lovas, J. Chem. Phys., 1977, 66, 4149.
 ⁴ H. W. Kroto, J. F. Nixon, K. Ohno, M. J. Taylor, and D. R. M. Walton, in preparation.